(0) Obligation:

JBC Problem based on JBC Program:
No human-readable program information known.

Manifest-Version: 1.0 Created-By: 1.6.0_20 (Sun Microsystems Inc.) Main-Class: IntRTA

(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 193 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load593(java.lang.Object(IntRTA(i13)), java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13))) → Cond_Load593(i13 >= 0 && i13 < i38 && i13 + 1 > 0, java.lang.Object(IntRTA(i13)), java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13)))
Cond_Load593(TRUE, java.lang.Object(IntRTA(i13)), java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13))) → Load593(java.lang.Object(IntRTA(i13 + 1)), java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13 + 1)))
The set Q consists of the following terms:
Load593(java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)), java.lang.Object(IntRTA(x0)))
Cond_Load593(TRUE, java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)), java.lang.Object(IntRTA(x0)))

(5) DuplicateArgsRemoverProof (EQUIVALENT transformation)

Some arguments are removed because they only appear as duplicates.
We removed arguments according to the following replacements:

Load593(x1, x2, x3) → Load593(x2, x3)
Cond_Load593(x1, x2, x3, x4) → Cond_Load593(x1, x3, x4)

(6) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load593(java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13))) → Cond_Load593(i13 >= 0 && i13 < i38 && i13 + 1 > 0, java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13)))
Cond_Load593(TRUE, java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13))) → Load593(java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13 + 1)))
The set Q consists of the following terms:
Load593(java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)))
Cond_Load593(TRUE, java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)))

(7) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load593(java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13))) → Cond_Load593(i13 >= 0 && i13 < i38 && i13 + 1 > 0, java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13)))
Cond_Load593(TRUE, java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13))) → Load593(java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13 + 1)))

The integer pair graph contains the following rules and edges:
(0): LOAD593(java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0]))) → COND_LOAD593(i13[0] >= 0 && i13[0] < i38[0] && i13[0] + 1 > 0, java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))
(1): COND_LOAD593(TRUE, java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1]))) → LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1] + 1)))

(0) -> (1), if ((java.lang.Object(IntRTA(i38[0])) →* java.lang.Object(IntRTA(i38[1])))∧(java.lang.Object(IntRTA(i13[0])) →* java.lang.Object(IntRTA(i13[1])))∧(i13[0] >= 0 && i13[0] < i38[0] && i13[0] + 1 > 0* TRUE))


(1) -> (0), if ((java.lang.Object(IntRTA(i13[1] + 1)) →* java.lang.Object(IntRTA(i13[0])))∧(java.lang.Object(IntRTA(i38[1])) →* java.lang.Object(IntRTA(i38[0]))))



The set Q consists of the following terms:
Load593(java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)))
Cond_Load593(TRUE, java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)))

(9) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD593(java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0]))) → COND_LOAD593(i13[0] >= 0 && i13[0] < i38[0] && i13[0] + 1 > 0, java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))
(1): COND_LOAD593(TRUE, java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1]))) → LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1] + 1)))

(0) -> (1), if ((java.lang.Object(IntRTA(i38[0])) →* java.lang.Object(IntRTA(i38[1])))∧(java.lang.Object(IntRTA(i13[0])) →* java.lang.Object(IntRTA(i13[1])))∧(i13[0] >= 0 && i13[0] < i38[0] && i13[0] + 1 > 0* TRUE))


(1) -> (0), if ((java.lang.Object(IntRTA(i13[1] + 1)) →* java.lang.Object(IntRTA(i13[0])))∧(java.lang.Object(IntRTA(i38[1])) →* java.lang.Object(IntRTA(i38[0]))))



The set Q consists of the following terms:
Load593(java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)))
Cond_Load593(TRUE, java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)))

(11) ItpfGraphProof (EQUIVALENT transformation)

Applied rule ItpfICap [ICap]

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD593(java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0]))) → COND_LOAD593(i13[0] >= 0 && i13[0] < i38[0] && i13[0] + 1 > 0, java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))
(1): COND_LOAD593(TRUE, java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1]))) → LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1] + 1)))

(0) -> (1), if (((i38[0]* i38[1]))∧((i13[0]* i13[1]))∧(i13[0] >= 0 && i13[0] < i38[0] && i13[0] + 1 > 0* TRUE))


(1) -> (0), if (((i13[1] + 1* i13[0]))∧((i38[1]* i38[0])))



The set Q consists of the following terms:
Load593(java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)))
Cond_Load593(TRUE, java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)))

(13) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD593(java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13))) → COND_LOAD593(&&(&&(>=(i13, 0), <(i13, i38)), >(+(i13, 1), 0)), java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13))) the following chains were created:
  • We consider the chain LOAD593(java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0]))) → COND_LOAD593(&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0)), java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0]))), COND_LOAD593(TRUE, java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1]))) → LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(+(i13[1], 1)))) which results in the following constraint:

    (1)    (i38[0]=i38[1]i13[0]=i13[1]&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0))=TRUELOAD593(java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))≥NonInfC∧LOAD593(java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))≥COND_LOAD593(&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0)), java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))∧(UIncreasing(COND_LOAD593(&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0)), java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(+(i13[0], 1), 0)=TRUE>=(i13[0], 0)=TRUE<(i13[0], i38[0])=TRUELOAD593(java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))≥NonInfC∧LOAD593(java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))≥COND_LOAD593(&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0)), java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))∧(UIncreasing(COND_LOAD593(&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0)), java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i13[0] ≥ 0∧i13[0] ≥ 0∧i38[0] + [-1] + [-1]i13[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD593(&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0)), java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i13[0] + [bni_11]i38[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i13[0] ≥ 0∧i13[0] ≥ 0∧i38[0] + [-1] + [-1]i13[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD593(&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0)), java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i13[0] + [bni_11]i38[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i13[0] ≥ 0∧i13[0] ≥ 0∧i38[0] + [-1] + [-1]i13[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD593(&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0)), java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i13[0] + [bni_11]i38[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i13[0] ≥ 0∧i13[0] ≥ 0∧i38[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD593(&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0)), java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))), ≥)∧[(-1)Bound*bni_11] + [bni_11]i38[0] ≥ 0∧[(-1)bso_12] ≥ 0)







For Pair COND_LOAD593(TRUE, java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13))) → LOAD593(java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(+(i13, 1)))) the following chains were created:
  • We consider the chain COND_LOAD593(TRUE, java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1]))) → LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(+(i13[1], 1)))) which results in the following constraint:

    (7)    (COND_LOAD593(TRUE, java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1])))≥NonInfC∧COND_LOAD593(TRUE, java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1])))≥LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(+(i13[1], 1))))∧(UIncreasing(LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(+(i13[1], 1))))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(+(i13[1], 1))))), ≥)∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(+(i13[1], 1))))), ≥)∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(+(i13[1], 1))))), ≥)∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(+(i13[1], 1))))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD593(java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13))) → COND_LOAD593(&&(&&(>=(i13, 0), <(i13, i38)), >(+(i13, 1), 0)), java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13)))
    • (i13[0] ≥ 0∧i13[0] ≥ 0∧i38[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD593(&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0)), java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))), ≥)∧[(-1)Bound*bni_11] + [bni_11]i38[0] ≥ 0∧[(-1)bso_12] ≥ 0)

  • COND_LOAD593(TRUE, java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(i13))) → LOAD593(java.lang.Object(IntRTA(i38)), java.lang.Object(IntRTA(+(i13, 1))))
    • ((UIncreasing(LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(+(i13[1], 1))))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD593(x1, x2)) = [-1] + [-1]x2 + x1   
POL(java.lang.Object(x1)) = x1   
POL(IntRTA(x1)) = x1   
POL(COND_LOAD593(x1, x2, x3)) = [-1] + [-1]x3 + x2   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(0) = 0   
POL(<(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   

The following pairs are in P>:

COND_LOAD593(TRUE, java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1]))) → LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(+(i13[1], 1))))

The following pairs are in Pbound:

LOAD593(java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0]))) → COND_LOAD593(&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0)), java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))

The following pairs are in P:

LOAD593(java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0]))) → COND_LOAD593(&&(&&(>=(i13[0], 0), <(i13[0], i38[0])), >(+(i13[0], 1), 0)), java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))

There are no usable rules.

(14) Complex Obligation (AND)

(15) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD593(java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0]))) → COND_LOAD593(i13[0] >= 0 && i13[0] < i38[0] && i13[0] + 1 > 0, java.lang.Object(IntRTA(i38[0])), java.lang.Object(IntRTA(i13[0])))


The set Q consists of the following terms:
Load593(java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)))
Cond_Load593(TRUE, java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)))

(16) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(17) TRUE

(18) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD593(TRUE, java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1]))) → LOAD593(java.lang.Object(IntRTA(i38[1])), java.lang.Object(IntRTA(i13[1] + 1)))


The set Q consists of the following terms:
Load593(java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)))
Cond_Load593(TRUE, java.lang.Object(IntRTA(x0)), java.lang.Object(IntRTA(x1)))

(19) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(20) TRUE